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Computer-assisted exercises for

physical chemistry . .

'n order to differentiate it from the re-
stricted concept of a programmed instruction scheme, I
consider computer-assisted instruction to mean any
form of instruction which makes use of a computer to
assist the student. In this context, the exercises out-
lined below have several levels of instructional benefit:
(1) As a prerequisite to the use of the computer, the
student necessarily must learn to program. Insofar as
programming is rapidly becoming an indispensable
laboratory technique, the student achieves this goalin a
limited but still useful manner. (2) In the past, the
introductory physical chemistry course has necessarily
over-emphasized ideal systems, in part because the
mathematics becomes too cumbersome when real sys-
tems are treated. (Note that the mathematics is
generally too cumbersome for practical student use, not
too difficult inherently.) With the availability of com-
puters, tedious arithmetic is no longer a problem to be
evaded.” Thus, as the principal instructional aspect of
these exercises, students examine the PV T behavior of
a real, nonideal, gas—CO, in our exercises—and com-
pare various equations of state with the experimental
results. In our actual laboratory work one of the
first experiments performed is the determination of the
isothermal compressibility factor of several real gases,
including CO,, as a function of pressure. By focusing
the students’ attention on this subject for a few weeks
prior to the actual lab, the level of interest and under-
standing is much greater than usual. (3) As part of the
computations, students are introduced to such ideas as
series expansions of functions, iterative solutions of
equations, and appropriate plotting of data. (4)
Finally, by doing computer exercises for the first few
weeks of the term, a desirable phase lag is introduced
between the lecture and laboratory program. Hereto-
fore, students often ‘“did” an experiment before they
had an opportunity to study and discuss the principles;
with few exceptions we found this to be unsatisfactory.
A brief outline of the computer-assisted excercises
follows below. We have used Dickson’s text,! supple-
mented by our computing center’s Student Guide.
Although there are two remote terminals for the CDC-
6400 computer, the waiting time is long and most stu-
dents use the batch (road-runner) service which permits
at most two turn-arounds per day. Thus, if extensive
debugging is required, as it may at the beginning, only
brief programs should be assigned. In terms of com-

! DicksoN, T. R., “The Computer and Chemistry,” W. H.
Freeman and Co., San Francisco, 1968.

* “Landolt-Bornstein  Tables,” Springer-Verlag, New York,
1967, vol. IV, part 4a, p. 297.

3 CasterraN, G, “Physical Chemistry,” Addison-Wesley
Publishing Co., Reading, Mass., 1964, p. 42.
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puting time, and thus of funds, the entire series of e-
ercises makes extremely modest demands; we estimut.
a minute per student as the maximum.

The Exercises

Ezxercise (1). The Van der Waals equation is expanded i,
powers of V=), Then the approximation V=1 = P/RT is applic{
and the series is truncated after the quadratic term leading to

Z = PV/RT =1+ (b — a/RT)(P/RT) + (b/RT)*P* (1

Students are given the values of the Van der Waals a and 4
for CO. and each is assigned a temperature in the range 320 <
T < 500°K (1.05 < Tr < 1.64). Each student evaluates the
compressibility factor at this temperature at 20-atm incremeut.
in therange 0 < P < 300 atm (0 < Pr < 4). Z is plotted as s
function of P. ;

After the students have been taught the use of the
key-punches and have“been given the format of the
various control cards required to process the job, thi
exercise goes very smoothly. In the first flush of en-
thusiasm at getting a printout, the students generally
pay little attention to the results. However, somec
students noted that the monotonically decreasing /
(see the figure) is not the behavior expected and ex-
tended the calculation to much higher pressures, ob-
serving that Z goes through a minimum at about 10(¢
atm (depending on temperature, of course). Thi
raises the question of the actual behavior of CO,. The
experimental data? have not yet been introduced and
most of the students haven’t the expertise or the incen-
tive to search them out. But this is a natural way tv
bring in corresponding states and reduced equations of
state, and the class is soon convinced that the compute
minimum in Z at P = 1000 atm is an artifact—that th:
trouble lies with eqn. (1) itself—and this leads to =
reexamination of the two approximations made in 1t-
development. The students quickly convinee then:
selves (either analytically or by including many of th
higher terms, a trivial modification of their program
that truncation of the infinite series is not the maj”
problem. This focuses attention on the remaini:
approximation—use of Visea instead of Vg Th-
point is further considered as part of Exercise 2.

Ezercise (2). As a continuation of the study of equation* o
state, the Beattie-Bridgeman equation? is introduced both s *
polynomial in V1

‘RT
&=y
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trtrntn
and as the inverted (truncated) power series in P

_BT B . 'p1
V= P +RT+7P+6P
where
y' = (1/RT)* (v — B*/RT)

el

e A g

PR PE SR,

s

ramw

The Bes
e prov
factor at)
i previe
purpose
PAPIess1g
it othe
Part E
volume
~mplicit;
I'he Van
o estimyg
value for
-1ill bett:

This
and als|
the meg
matical

Althc
fuctor ¢
results
Waals ¢
at abou
Also, tl
mtercor
ke th
wareeme
1, of ec
portuni
peratur
TR = 1.‘
81 g/¢
liquids |
foreibly
sumilar |
rquatio
high pry
“icha g

Ererci.
with an
canstants
: vflhlgl\"
“\pandec
e subst

7
Z upproy

sed e
inere
! the
1, the
Y

e is

Fhis i

Wleal

R

This
e d

“hront

RS (1)




Sf!r:!“ uf o\

We estima

5 exdaniled o
JRT is appl
n lezding u
b, RT 1
vaals a and ?
} raLge J2) -
evauates the
'm incremet '
is plotted as s

e use of 1
'mat of th:
he job, thi-
flush of en-
ts generally
‘ever, some
acreasing Z
ced and ex-
agsures, ob-
about 10(%
irse).  This
CO,. Th
dduced and
r the incen
aral way to
quations ¢f
2 compute!
t—that th
leads to s
nade in 1!
ince them:-
\any of th
r progran:
the mujor
remainin:
... Th

oder

equations <
»d both u~ 2

—— e x

- s g

NP Epap R ——

i o B

B L

T A i s A T,

NEVEISPREO—

gy a0 -+

8 = (1/RT) [5 — 38v/RT + 28°/(RT)?]
8 = RTBy — Ao — Rc/T?

v = —RTBb + Awa — RBoc/T?

5 = RBbc/T?

Beattie-Bridgeman constants Ao, @, By, b, and ¢ for CO,

l,l‘l.‘ provided and each student computes the compressibility
‘..-(or at 20-atm increments to 300 atm at the same temperature
i

. previously, using eqn. (3). This exercise is primarily for the
.‘\.“'p()se of programming experience; the relatlv?ly comp]nqatecl
"\pressions lead to syntactical errors 1n parenthetical expressions,
;.\n otherwise the program is s‘rmghtfc.)rwz_xrd.

part B. The Van der Waals equation 1s solved for the molar
colume at 100 atm by iterative mfethods. }_Because. of its
.mplicity, the first of the meth.ods Qescr1t3ed by Dickson* is used:

rhe Van der Waals equation is written in the form V' = F(V);
.1 estimate of V is substituted into F(V), leading to an improved
calue for V. This, in turn, is substituted into F(V), leading to a
+ill better approximation, etc.

This exercise introduces more programming ideas
.nd also the whole problem of convergence as well as
the meaning of a solution to an equation from a mathe-
matical and physical point of view. o

Although not discussed in detail, the compressibility
f1ctor computed from eqn. (3) is exact to O (P?) and the
results differ greatly from the approximate Van der
Waals computation of exercise (1). Zmin NOW occurs
«t about the correct pressure, and Z > 1 at 300 atm.?
\lso, the temperature dependence of Z. (obtained by
intercomparison of various isot-herm§) is much more
like that predicted by corresponding states. The
agreement with experimental data 1s poorest near Tr =
1. of course, (see the figure) and this prov1des an op-
portunity to discuss the relative effectiveness of tem-
perature (kinetic energy) and intermolecular forces. At
T, = 1.03 the experimental density of CO. at 200 atm is
0.84 g/cm® and the distinction—or Ia.ck pf 1t—betwee.n
liquids and dense gases, and the continuity of states, is
ioreibly driven home when students actually compute
.imilar values, as they do in solving the Van der Waals
squation exactly. Near Tz = 1, :Vt'dw = 0.5 Videal at
ligh pressures and it becomes obvious Wh)_r eqn. (1) is
-uch a poor approximation under these conditions.

Ezercise (3). The study of equations of state is conclpfied
with an examination of the Dieterici equation. The critical
wnstants of CO. are listed but not the Dieterici a and b. In
ualogy with the Van der Waals case, the Dieterici equ?tion is
+spanded in powers of V=1 and truncated at the qua_dratxc term,
the substitution V=1 = P/RT is made, and the resulting equation

Zapprox) = 1 + (1/RT) (b — a/RT)P +
(1/RT)? [0.5(a/RT)* + b* — b(a/RT)] P* (4)
< nsed to evaluate an approximate compressibility factor at 20-

.m increments, as before. Now that it is obvious to the students

lat the approximations used in developing eqn. (4) are quite
«or, the Dieterici equation is solved exactly for volume at each

“ressure by the Newton-Raphson iteration procedure® and this

“lue is used in the exact equation
Z(exact) = 1 + (V/(V — b)) exp(—a/RTV) (5)
This is repeated at 20-atm increments, as before. The values

Vieats, Vbieterici, Z(approx), and Z(exact) are tabulated
1 graphed.

This program is quite claborate and students have
<me difficulty in getting the whole program to run.
“ibroutines, which would help to keep the logic straight,

we not been introduced. The iteration is not com-

“tely straightforward since the function has singular-

< and in some instances the iteration would not
averge.  Again, the distinetion between a physically

02

Compressibility foctor, Z, as a function of pressure for CO,. Top: T=

373°K; Tr = 1.23. Heavy dashed line is experimental behavior from
“Landolt-Bornstein Tables" (see footnote 2). Curve 1 is the Dieterici
equation according to eqn. (4) of the text with a = 4.620 atm {* mole ~2,
b = 0.0463 | mole ™; Curve 2 is computed for the Van der Wacls equa-
tion without approximation using @ = 3.610 atm i mole ™%, b = 0.0429
| mole™; Curve 3 is calculated from a fourth-order virial equation using
the virial coefficients determined by E. G. Butcher and R. S. Dadson,
Proc. Roy. Soc. (London), 277A, 448 (1964); Curve 4 is the virial form
of the Dieterici equation according to eqn. (4) of the text; Curve 5 is the
Beattie-Bridgeman equation, according to egn. (2) of the text; Curve 6
is the virial form of the Van der Waals equation as expressed in egn. (1)
of the text; Curve 7 is the virial form of the Beattie-Bridgeman equation
according to eqn. (3) of the text. Bottom: Curves keyed as above.
Experimental data for Tg = 1.03; insufficient data to permit reliable
interpolation near the minimum; Curve 3 computed with virial coefficients
evaluated at Tp = 1.02.

meaningful solution, i.e., ¥V > b, and a purely mathe-
matical solution is emphasized.

By now the students have become so used to inputting
data to the computer they are at first confounded when
the values of a and b are not supplied. (They are to be
evaluated from the critical constants, a supplemental
problem which also emphasizes that the computer
does not supplant analysis.) Some looked for values
in the literature’ and were even more puzzled to
find that the quoted values depend on temperature:
we capitalize on this to discuss temperature-dependent
virial coefficients and suggested that the Beattie-
Bridgeman equation be reexamined from this point of
view.

- Student response to this aspect of the laboratory
program has been enthusiastic even though many stu-
dents admitted to spending ten or more hours on de-
bugging some of their programs. The amount of ma-
terial to which the students are exposed is so great that

4 Dickson, p. 113 (see footnote 1).

8 Actually, the approximate, truncated, Beattie-Bridgeman
equation, eqn. (3), overcompensates compared to the Van der
Waals equation. An exact solution (from eqn. (2)) indicates
that Z < 1 for all temperatures and pressures in our range (see
figure).

5 DicksoN, p. 114 (see footnote 1).

T Parrinaron, J. R., “An Advanced Treatise on Physical
Chemistry,” John Wiley & Sons, Inc., New York, 1949, Vol. I,

- p. 684, 711.
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it is unreasonable to expeet that they can assimilate
more than a small part of it, but they definitely do under-
stand the distinetion between real and ideal gases.

I found the preparation of the exercises very stimulat-
ing since I, like all students of my generation, never had
the opportunity to examine equations of state of real

gases very carefully. The type of information t}.,

now becomes readily available is illustrated in t},, -

ficure; with the programs available, extension to othy,
gasesis a trivial matter.

Readers who would like copies of the three excreis,..
are invited to write for them.

Vincent S. Steckline!
Drew University
Madison, New Jersey 07940

The Lenz-Ising Model has found wide
use in the study of co-operative phenomena.? Gas-
liquid and liquid-liquid critical phenomena, magnetic-
curie points, and helix coil transitions are examples of
the diversity of problems to which the model has been
applied. Although the model is conceptually simple,
its wonders are embedded deep within the mathematies
used in its solution. The phenomena associated with
the model in two dimensions (most spectacularly a
critical temperature) are given Deus ex machina in most
treatises on statistical mechanics leaving the student at
an uncomfortable level of abstraction. This article
describes a simple computer approximation to the
Lenz-Ising model which demonstrates the predicted
properties in the concrete terms of a computer printout
of the ordering of an initially random Lenz-Ising lat-
tice.

The heart of the program is two lattices, the Lenz-
Ising lattice A, the elements of which can have the value
=+1, and a second similar lattice B, used to store infor-
mation. The lattice size and number of dimensions can
be varied as can the energy e needed to change the sign of
an element as well as the temperature of the system.

Initially, lattice A is populated with random =1 (—1
raised to a random integer power between 0 and 9).
The individual elements of =1 have two forces acting on
them; random ‘“‘thermal” force, and the force of the
nearest neighbor interaction trying to make the sign of
all the nearest neighbors the same.

The nearest neighbor force is determined for each ele-
ment a(z,7) of A with the help of an index Q(z,7), the
sum of all the nearest neighbor lattice elements; thusin
two dimensions

Qi) =ali — 1L,))+aG+ 1)+ ... + a(i,j + 1)
If Q(7, ) is less than 0, the majority of nearest neighbors
are —1 and the element of lattice B, b(7, j) is set equal to
—1. IfQ(z,7) is greater than 0, b(z, j) is set equal to +1;
andif Q(7,7) = 0,b(s,7) = a(3,J).
Having decided what the sign of an element would be

from just nearest neighbor interaction, the program con-

siders random thermal forces. To change the sign of an
element the thermal energy kT must overcome the en-
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Computer Demonstrated Lenz-Ising Model

ergy of transition E arising from an energy barrier ¢ u-
well as the force of its nearest neighbors. The energy of
nearest neighbor interaction will be proportional to the
absolute value of Q. The factor exp[-(e + |Q|/kT)] wili
give a number between 0 and 1 proportional to the
probability that an element will have enough thermal
energy to change sign. In order to determine whether
this element is one of the lucky ones having enough en-
ergy, a random number between 0 and 1 is generated.
If the random number is smaller than exp[—(e +
|Q!/kT)], element b(3, 7) is changed to —b(%, 7).

After going through all of the elements of A and storing
the information in B, the program sets lattice A equal
to B and the process of determining which elements will
change sign is begun over again.

In two dimensions, below the critical temperature,
nearest neighbor forces succeed in ordering the lattice,
while above the critical temperature no ordering occurs.
The dynamies of the model, mimicking real ecritica!
phenomena, become very sluggish near the eriticul
temperature.
steps needed to order the system just below the critical
temperature, this temperature is determined to better
than one significant figure only with great patience.

Interestingly enough with 7 = 0 and therefore onl
nearest neighbor forces active, the lattice is seldom ahle
to order itself. As soon as four or more adjacent cle-
ments form a rectangle they become impregnable to on'y
nearest neighbor forces. At most an element of thi-
configuration ecan have only two neighbors of differct!
sign, and thus it cannot be forced to change its sign.
would seem that the random thermal forces are nece
sary to break up these otherwise unassailable domains-
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The computer model was not intended to be rigorou-. |

several better approximations to the Lenz-Ising lattice
are evident. I think, however, that these improv¢
ments would be needless complications adding nothing 1
the pedagogic value of the program. The original con
puter program (in Basie) is available from the author ¢
request.

! Work performed at Dartmouth College.
? BrusH, S. G., Rev. Mod. Phys., 39, 883 (1967).
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